1.3. Control of gene expression

A cell's _____ (genetic constitution) is determined by the sequence of the DNA bases in its genes (the genetic code).

A cell's _ _ _ _ _ _ _ _ _ (physical and chemical state) is determined by the proteins that are synthesised when the genes are expressed.

_____ acting inside and outside of the cell. Only a fraction of the genes in a cell are expressed.

<u>RNA</u>

	(RNA) is a single strand of RI	NA nucleotides. Each RNA nucleotide is	;
composed of a molecule of	sugar, a	group and an organic Ir	I
RNA, the base ,	replaces thymine (found in DNA).		

Characteristic	RNA	DNA
number of nucleotide strands present in one molecule		
complementary base partner of adenine		
sugar present in a nucleotide		

There are three types of RNA

carries a complementary copy of the DNA code from the nucleus to ribosomes in the cytoplasm.
is a type of RNA found in the cytoplasm . tRNA folds due to base pairing to form a triplet anticodon site and an attachment site for a specific amino acid. tRNA carries specific amino acids to ribosomes, where they can be assembled to form polypeptide chains.
rRNA and proteins are components of the ribosome and therefore they are both essential for protein synthesis to take place in all living cells.

Transcription

- Transcription takes place in the _____ and is the first step in gene expression.
- _ _ _ _ _ _ _ _ _ _ _ _ unwinds and unzips the double helix, of the gene to be expressed, by breaking the hydrogen bonds between the complementary bases.
- RNA polymerase then aligns complementary free _ _ _ _ _ _ _ _ _ _ _ _ against the exposed DNA nucleotides of the template strand.
- These free RNA nucleotides join together to form a _____ transcript of mRNA, which is made up of groups of three bases called _____.
- Each primary transcript of mRNA has both _____ (non-coding regions) and _____ (coding regions). During a process called _____ the introns are removed and the exons are spliced together to form a _____ transcript of mRNA.
- This mature mRNA transcript then passes out of the _____ to the _____ (found in the cytoplasm) to be translated.

<u>Translation</u>

- During this second stage, the mature mRNA transcript binds onto a ______
- mRNA carries a _ _ _ _ codon, to begin transcription
- ____ molecules transport a specific amino acid from the cytoplasm to the mRNA on the ribosome
- mRNA _ _ _ _ recognise incoming tRNA _ _ _ _ _ and match up to form
 _ _ _ _ base pairs.
- Empty tRNA molecules exit the ribosome and collect another specific amino acid.
- _____ form between the adjacent amino acids to form the polypeptide chain
- The mRNA carries a _ _ _ codon, to signal the end of translation, releasing the polypeptide chain
- The polypeptide chain folds into a **three**-dimensional shape to form a protein, which is held together by peptide bonds, _____ bonds and other molecular interactions between amino acids.

Different proteins can be expressed from the one gene, as a result of alternative RNA splicing and post-translational modifications.

Alternative RNA splicing	Post-translational modifications	
Different mRNA molecules are produced from the	After translation, the polypeptide chain can be	
same primary transcript depending on which	changed by and	
are included in the mRNA	chains or by adding or	
transcript.	groups to a protein.	