1.6. Mutations | When a cell divides, the process | | arefully controlled to preserve the base sequence. | | |--|--|---|--| | However, changes in the genome, known as, do occur and can result in there being n | | | | | and at but only occur | | | | | | Single gene mutations | | | | A single gene () mutation the substitution, insertion or dele | | A nucleotide sequence as a result of | | | Substitution | Insertion | Deletion | | | original | original | original | | | mutant | mutant | mutant | | | CCAACCCGA | GCGAACCCGA | CAACCCGA | | | Substitution | | | | | Types of single-nucleotide subs After a sumakes sens As a result becomes a synthesis polypeptid functional. A molecule exons toge | titutions ubstitution, the altered codon cose but not the original sense. t of a substitution, a codon the changed into one that acts as to be halted prematurely and le chain which is shorter than enderence of primary mRNA transcript is ether. A splice-site mutation substitution. | odes for an amino acid which still at used to code for an amino acid a stop codon. It causes protein d results in the formation of a the normal one and often non- spliced to remove introns and seal astitutes, inserts or deletes one or are normally removed, this results | | | | being left in. <u>Splice-site mutati</u> | ons can alter post-transcriptional | | | | Frame-shift mutations | | | | Insertions and deletions of a sinal | le base pair brings about | changes since they cause a large | | | | | d differs from the normal protein by | | | | | me-shift mutations can also result in | | | an expansion of a | | - ·· | | ## Chromosome Mutations Chromosome mutations alter the _____ of one or more _____. | Types of chromosome mutations: | | | |--|---|--| | <u>Duplication</u> | A segment of genes is Some duplication of genes may have a detrimental | | | original | effect or be of an advantage. | | | mutant ABGDGDEFGHD | | | | <u>Deletion</u> | A segment of genes becomes and the two remaining ends giving a shorter | | | original ADDDEFUHD | chromosome lacking the detached genes. | | | mutant (A B C H D) | Deletion normally has drastic effects on the living organism involved. | | | <u>Inversion</u> | A segment of genes is This results in non-viable gametes. | | | original Augustum | | | | mutant A D D D F G H D | | | | Translocation | A section of one chromosome off and to another chromosome that is | | | original ADDEFERD ONLY NO POB | not it's matching partner. This results in non- | | | mutant ADDMNOPQR JKLDEFEHI | viable gametes. | | | Tour and an analysis and are admits about to an about an | | | ## Importance of mutations and gene duplication in evolution | · | New alleles of genes arise. Most mutations are Mutations are the driving | |--|--| | force of | | | Gene duplication is important for the evolution of Normally, changes to genes result in selection. However, when genes are that can accumulate further mutations, which over function. | f a species as it can facilitate the creation of new of function and so are by natural duplicated by mutation, it creates a generatime can give rise to related genes but with a new | | Poly | <u>oloidy</u> | | Polyploidy is the result of an error occurring (nondisjunction) and all the is a mutation where cells receive one or more extra | e matching chromosomes fail to separate. Polyploidy | | Importance of polyploidy in evolution | Importance of polyploidy in human food crops | | Polyploid organisms may have an evolutionary advantage over diploid organisms because the extra sets of chromosomes have the ability to mask any conditions caused by recessive alleles. In addition, these duplicated chromosomes are free to accumulate mutations that may eventually result in a new beneficial trait. | - they produce a higher of fruit |